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Abstract. We examine in detail the quantum memory technique for photons in a double Λ atomic ensemble
in this work. The novel application of the present technique to create two different quantum probe fields
as well as entangled states of them is proposed. A larger zero-degeneracy class besides dark-state subspace
is investigated and the adiabatic condition is confirmed in the present model. We extend the single-mode
quantum memory technique to the case with multi-mode probe fields, and reveal the exact pulse matching
phenomenon between two quantized pulses in the present system.

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 42.50.Gy Effects of
atomic coherence on propagation, absorption, and amplification of light; electromagnetically induced trans-
parency and absorption – 03.65.Fd Algebraic methods

1 Introduction

Since the remarkable demonstration of ultraslow light
speed in a Bose-Einstein condensate in 1999 [1], rapid
advances have been witnessed in both experimental and
theoretical aspects towards probing the novel mechanism
of Electromagnetically Induced Transparency (EIT) [2]
and its many potential applications [3–5,7,6]. Particularly,
based on “dark-state polaritons” (DSPs) theory [8], the
quantum memory via EIT technique is actively being ex-
plored by transferring the quantum states of photon wave-
packets to metastable collective atomic-coherence (collec-
tive quasi spin states) in a loss-free and reversible manner
[9]. For the three-level EIT quantum memory technique,
a semidirect product group under the condition of large
atom number and low collective excitation limit [8] was
discovered by Sun et al. [10], and the validity of the adi-
abatic condition for the evolution of DSPs has also been
confirmed.

As a natural extension, controlled light storing in a
medium composed of double Λ type four-level atoms was
mentioned [11] and briefly studied recently [12]. How-
ever, in these previous theoretical works, the probe light
is treated as classical [12] and the evolution of the to-
tal wave function of the probe pulses and atoms is not
clear. Thus many properties of a quantum memory with
four-level atomic system have not been discovered. In this
paper, we present a quantum description of DSP theory in
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such a double Λ type atomic ensemble interacting with two
quantized fields and two classical control fields. The novel
application of our model to create two different quantum
probe fields as well as their entangled states is proposed.
Furthermore, we extend the single-mode quantum mem-
ory technique to the case with multi-mode probe fields,
and reveal the exact pulse matching phenomenon between
two quantized probe pulses.

2 Model

Turning to the situation of Figure 1a, we assume that a
collection of N double Λ type four-level atoms (87Rb) in-
teract with two single-mode quantized fields with coupling
constants g1 and g2, and two classical control ones with
time-dependent real Rabi-frequencies Ω1(t) and Ω2(t).
Generalization to the multi-mode probe pulse case will
be studied later. All probe and control fields are co-
propagating in the z-direction (Fig. 1b). Considering all
transitions at resonance, the interaction Hamiltonian of
the total system can be written as:

V̂ = g1

√
Nâ1Â

†+Ω1T̂ac+g2

√
Nâ2D̂

†+Ω2T̂dc+h.c., (1)

where the collective atomic excitation operators: Â =
(1/

√
N)

∑N
j=1 σ̂j

ba, Ĉ = (1/
√

N)
∑N

j=1 σ̂j
bc, D̂ =

(1/
√

N)
∑N

j=1 σ̂j
bd with σ̂i

µν = |µ〉ii〈ν| (µ, ν = a, b, c, d)
being the flip operators of the ith atom between states
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Fig. 1. Double Λ type four-level 87Rb atoms coupled to two
single-mode quantized and two classical control fields (a). The
schematic setup for experimental realization is shown in part
(b). Co-propagating input probe and control fields are used
to avoid Doppler-broadening. The polarizing beam splitter is
used to separate probe photons from control ones.

|µ〉 and |ν〉, and T̂−
µν = T̂µν =

∑N
j=1 σ̂j

µν , T̂ +
µν = (T̂−

µν)†

with µ �= ν = a, c, d. Denoting by |b〉 = |b1, b2, ..., bN 〉
the collective ground state with all N atoms staying in
the same single particle ground state |b〉, we can easily
give other quasi-spin wave states by the collective atomic
excitation operators: |an〉 = [n!]−1/2(Â†)n|b〉, |cn〉 =
[n!]−1/2(Ĉ†)n|b〉, and |dn〉 = [n!]−1/2(D̂†)n|b〉. Following
the analysis in reference [10], one can verify that the dy-
namical symmetry of our double Λ system is governed by
a semidirect sum Lie algebra su(3)⊗h3 in large N limit
and low excitation condition.

To give a clear description of the interesting quantum
memory process in this double Λ type four-level-atoms
ensemble, we define the new type of dark-state-polaritons
operator as

d̂ = cos θ cosφâ1 − sin θĈ + cos θ sin φâ2, (2)

where the mixing angles θ and φ are defined through
tan θ = g1

√
N/

√
Ω2

1 + Ω2
2g2

1/g2
2 and tanφ = g1Ω2/g2Ω1.

By a straightforward calculation one can verify that
[d̂, d̂†] = 1 and [V̂ , d̂ ] = 0, hence the general atomic dark
states can be obtained through |Dn〉 = [n!]−1/2(d̂†)n|0〉,
where |0〉 = |b〉 ⊗ |0, 0〉e and |0, 0〉e denotes the electro-
magnetic vacuum of two quantized probe fields. So we
reach

|Dn〉 =
n∑

k=0

n−k∑

j=0

√
n!

k!(n − k − j)!j!
(− sin θ)k(cos θ)n−k

× (sin φ)j(cosφ)n−k−j |ck, n − k − j, j〉. (3)

From this formula it is clear that when the mix-
ing angle θ is adiabatically rotated from 0 to π/2,
the quantum state of the DSPs is transferred from
pure photonic character to collective excitations, i.e.
|Dn〉:

∑n
j=0

√
n!/(n − j)!j!(sin φ)j(cosφ)n−j |b〉|n−j, j〉 →

|cn〉|0, 0〉.
Similarly, another important physical phenomenon can

also be predicted through our quantized description of this
system. If initially only one quantized field (described by
the coherent state |α2〉 with α2 = α0) is injected into
the atomic ensemble to couple the transition from |b〉 to
|d〉, and the second control field is chosen to be much
stronger than the first one (g1Ω2(0) � g2Ω1(0)) along
with

√
g2
2Ω

2
1(0) + g2

1Ω2(0)2 � g1g2

√
N (or sin φ0 = 1 and

cos θ0 = 1), the initial total state of the quantized field
and atomic ensemble reads

|Ψ0〉 =
∑

n

Pn(α0)|0, n〉 ⊗ |b〉, (4)

where Pn(α0) = (αn
0 /

√
n!)e−|α0|2/2 is the probability dis-

tribution function. Subsequently, the mixing angle θ is adi-
abatically rotated to π/2 by turning off the two control
fields, hence the quantum state of the probe light |α2〉 is
fully mapped into the collective atomic excitations. When
both of the two control fields are turned back on and the
mixing angle θ is rotated to θ = 0 again with φ to some
value φe, which is only determined by the Rabi-frequencies
of the two re-applied control fields, we finally obtain from
equation (3)

|Ψe〉 =
∑

j

∑

k

Pj(αe1)Pk(αe2)|b, j, k〉

= |b〉 ⊗ |αe1〉 ⊗ |αe2〉, (5)

where αe1 = α0 cosφe and αe2 = α0 sin φe are the parame-
ters of the two released coherent lights. The above expres-
sion shows that the injected quantized field can convert
into two different coherent pulses |αei〉 (i = 1, 2) after a
proper evolution manipulated by two control fields. For
example, (i) if φe = π/2, we have αe1 = 0 and αe2 = α0,
which means the released pulse is the same as the ini-
tial injected one; (ii) if φe = 0, we have αe1 = α0 and
αe2 = 0, which means that the injected quantized field
state is now fully converted into a different light beam
|αe1〉. Obviously, this novel mechanism can be extended
to other cases of the injected field, for example, in the
presence of a non-classical or squeezed light beam (see the
following discussion). In experiments, there also holds the
promise for actual observation through, e.g., combining a
beam splitter and an electro-optic modulator to generate
the requisite sidebands [1].

3 Generation of entangled coherent states

It is interesting to note that when we input a non-classical
or squeezed probe light, by proper steering the control
fields, we can generate two output entangled light beams.
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Firstly we consider that the injected quantized field is in
a macroscopic quantum superposition of coherent states,
e.g. for the initial total state

|Ψ0〉± =
1

√N (α0)
|0〉 ⊗ (|α0〉 ± | − α0〉) ⊗ |b〉, (6)

where the normalized factor N±(α0) = 2±2e−2|α0|2 , with
the scheme discussed above and from equation (3) we find
the injected quantized pulse can evolve into a very inter-
esting entangled coherent state (ECS) of two output fields
(|Ψ0〉± → |Ψe〉±)

1
√N±(α0)

|0〉⊗(|α0〉 ± | − α0〉
) ⊗ |b〉 =

1
√N±(α0)

(|0〉 ⊗ |α0〉 ± |0〉 ⊗ | − α0〉
) ⊗ |b〉

−→ 1
√N±(α0)

( ∑

j

∑

k

Pj(αe1)Pk(αe2)|b, j, k〉

±
∑

j

∑

k

Pj(−αe1)Pk(−αe2)|b, j, k〉
)
. (7)

The final state in the above formula can be rewritten as:

|Ψe〉± =
1

√N±(α0)

(|αe1, αe2〉 ± |− αe1,−αe2〉
)

light
⊗ |b〉.

(8)
where the subscript light indicates the state of the output
two probe pulses.

If φe = 0, hence αe1 = α0 and αe2 = 0, and then the
evolution of the quantized fields proceeds as |0〉 ⊗ (|α0〉 ±
|− α0〉)/

√N±(α0) → (|α0〉 ± |− α0〉) ⊗ |0〉/√N±(α0),
which means the input Schrödinger state is now fully con-
verted into another one with different vibrational mode.
On the other hand, for the general case of non-zero value
of the coherent parameters αe1 and αe2, the states of out-
put quantized fields are entangled coherent states. Since
the parameters αei (i = 1, 2) are controllable, the en-
tanglement of the output states [13] E±(αe1, αe2) = −
tr(ρ±αe1

ln ρ±αe1
) with the reduced density matrix ρ±αe1

=
tr(αe2,atom)(|Ψe〉〈Ψe|)± can also easily be controlled by the
re-applied control fields. In particular, for the initial state
|Ψ0〉−, if φe = π/4, we have αe1 = αe2 = α0/

√
2 and then

we obtain the maximally entangled state (MES):

|0〉⊗(|α0〉 − | − α0〉
)
/
√
N−(α0) −→

(| α0√
2
,

α0√
2
〉 − | − α0√

2
,− α0√

2
〉)/

√
N−(α0), (9)

which is most useful for quantum information processes.
With the definitions of the orthogonal basis |+〉 =(|α0/

√
2〉+|−α0/

√
2〉)/√N+(α0/2) and |−〉 =

(|α0/
√

2〉−
|− α0/

√
2〉)/√N−(α0/2), the output coherent states can

be rewritten as

Φlight(−) =
1√
2

(|+〉|−〉 + |−〉|+〉)
light

, (10)

which manifestly has one ebit of entanglement (since
〈+|−〉 = 0). We should emphasize that all the above re-
sults can not be obtained with classical DSP theory of a
four-level system. Since our scheme of generating the en-
tangled coherent states via quantized DSP theory is linear
and controllable and it only requires a macroscopic quan-
tum superposition for the initial state, this scheme may be
feasible in experiment which has made much progress in
recent years [14]. Besides our technique, the generation of
entangled coherent states via Kerr effect [7] and entangle-
ment swapping using Bell-state measurements [15] is also
studied widely.

If the two output entangled coherent lights are respec-
tively injected into two other atomic ensembles composed
of many three-level atoms, and the quantum states of
the lights are mapped into quasi spin-waves via separate
Raman transitions, it is possible to generate controllable
entangled coherence of two atomic ensembles.

Consider now a different type of input quantum state
corresponding to a single-photon state, i.e. the initial total
state |Ψ0〉 = (|0〉⊗|1〉)light⊗|b〉. According to equation (3)
and after the light state storage process discussed in Sec-
tion 2, the final state yields:

Φlight =
1√
2

(|1〉|0〉 + |0〉|1〉)
light

. (11)

The entangled states generated with the present scheme
have other interesting aspects. Firstly, since the two out-
put probe fields are different in frequency, the generated
entangled states is between two quantized fields with dif-
ferent frequencies. Secondly, since the direction of the
output probe field can be fully controlled by the corre-
sponding control field [3], based on our scheme, the out-
put directions of the two entangled probe fields can be
controlled by the two reapplied control fields. These inter-
esting factors are advantages of our scheme for generating
entangled light fields, which is different from that using a
standard beam splitter.

4 Validity of adiabatic condition

As already known, the condition of adiabatic evolution is
most important for the quantum memory technique based
on the quantized DSPs theory, because the total system
should be confined to a dark states during the process
of quantum memory. One can verify that when g1 �= g2,
no larger zero subspace is obtained except for dark states
and the adiabatic condition can be guaranteed by the adi-
abatic theorem. However, the dynamical symmetry in the
present system depicted by the semi-direct sum algebra
h3⊗su(3) indicates that, for the special case g1 = g2 = g,
we may find a larger degeneracy class of states with zero-
eigenvalue in this system. We define

Q̂†
± = û† ± b̂†, P̂ †

± = − sinφâ1 + cosφâ2 ± v̂†, (12)

where the operators û, v̂ and the bright-state-polaritons
(BSPs) operator b̂ are defined as: û = cosφÂ + sin φD̂,
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v̂ = − sinφÂ + cosφD̂ and b̂ = sin θ cosφâ1 + cosφĈ +
sin θ sin φâ2. By a straightforward calculation one obtains
the communication relations [V̂ , Q̂†

±] = ±ε1Q̂
†
±, [V̂ , P̂ †] =

±ε2P̂
†
± and [P̂ †

±, Q̂†
±] = 0 with ε1 =

√
g2N + Ω2

1 + Ω2
2 and

ε2 = g
√

N . Thus we further obtain

[V̂ , P̂ †
±Q̂†

±] = ±ε1P̂
†
±Q̂†

± ± ε2P̂
†
±Q̂†

±. (13)

To this end we have obtained all communication relations
between the above operators. Thanks to these results we
finally obtain a much larger degeneracy class:

|r(i, j; k, l; n)〉 =
1√

i!j!k!l!
(Q̂†

+)i(Q̂†
−)j(P̂ †

+)k(P̂ †
−)l|Dn〉,

with eigenvalue E(i, j; k, l) = (i − j)ε1 + (k − l)ε2. Obvi-
ously, when i = j and k = l, one finds the zero-eigenvalue
degeneracy class is

|d(i, k; n)〉 =
1

i!k!
(Q̂†

+Q̂†
−)i(P̂ †

+P̂ †
−)k|Dn〉, (14)

(i, k, n = 0, 1, 2, ...).

The larger class {|d(i, k; n)〉 |n = 0, 1, 2, ...} of states of
zero eigenvalue are constructed by acting (Q̂†

+Q̂†
−) i times

and (P̂ †
+P̂ †

−) k times on the dark state |Dn〉. Only when
i = 0 and k = 0, the larger degeneracy class reduces to
the special subset {|Dn〉 |n = 0, 1, 2, ...} of the interac-
tion Hamiltonian. As usual, the quantum adiabatic theo-
rem does not forbid the transition between those states of
same eigenvalue, hence it is important also in the present
four-level-atoms system to confirm the forbiddance of any
transitions from dark states |Dn〉 to {|d(i, k; n)〉| ik �=
0, n = 0, 1, 2, ...}. Generally this problem can be studied by
defining the zero-eigenvalue subspaces S[i,k]: {|d(i, k; n)〉|
i, k, n = 0, 1, 2, ...}, in which S[0,0] = S is the dark-
state subspace. The complementary part of the direct sum
DS = S[0,0]⊕ S[0,1]⊕ S[1,0]⊕· · · of all zero-eigenvalue sub-
spaces is noted by ES = S[ES] in which each state turns
out to have some nonzero eigenvalue after some calcula-
tions. Any state |φ[i,k](t)〉 =

∑
i,k;n c

[i,k]
n (t)|d(i, k; n)〉 in

S[i,k] evolves according to [10]

i
d

dt
c[i,k]
n (t) =

∑

i′,k′;n′
Di′,k′;n′

i,k;n c
[i′,k′]
n′ (t) + F [ES], (15)

where F [ES], which can be ignored under
adiabatic conditions [10,16], represents a cer-
tain functional of the complementary states
and Di′,k′;n′

i,k;n = −i〈d(i′, k′; n′)|∂t|d(i, k; n)〉 =
−iθ̇〈d(i′, k′; n′)|∂θ|d(i, k; n)〉 − iφ̇〈d(i′, k′; n′)|∂φ|d(i, k; n)〉
with θ̇ = dθ/dt and φ̇ = dφ/dt. With the definitions of
these operators, we can easily calculate:

∂θ b̂ = d̂, ∂θd̂ = −b̂;

∂φb̂ = sin θŝ, ∂φû = v̂,

∂φv̂ = −û, ∂φâ = ŝ, ∂φŝ = −â, (16)

where â = cosφâ1 + sin φâ2 and ŝ = − sinφâ1 + cosφâ2.
From these results one can finally determine that the equa-
tions about ∂θ|d(i, k; n)〉 and ∂φ|d(i, k; n)〉 do not contain
the term |d(i′, k′; n′)〉, hence 〈d(i′, k′; n′)|∂t|d(i, k; n)〉 = 0
and the evolution equation yields dc

[i,k]
n (t)/dt = 0, i.e.,

there is no mixing of different zero-eigenvalue subspaces
during the adiabatic process and therefore, even for the
special case of g1 = g2, quantum memory may till be ro-
bust in the present double Λ type atomic ensemble.

5 Quantum memory for multi-mode
quantized fields

In this section we shall extend the technique of quantum
memory for a single-mode field to the multi-mode case
in the double Λ atomic-ensemble system. The two quan-
tized fields described by the slowly-varying dimensionless
operator are given by

Êj(z, t) =
∑

k

âkj (t)e
−i

νj
c (z−ct), (j = 1, 2), (17)

where ν1 = ωab, ν2 = ωdb are the carrier frequencies of the
two quantized optical fields. If the (slowly-varying) quan-
tum amplitude does not change much in a small length
interval ∆z which contains Nz � 1 atoms, we can intro-
duce continuous atomic variables [8]

σ̃µν(z, t) =
1

Nz

∑

zj∈Nz

σ̂j
µν(t), (18)

where σ̂j
µν = |µj〉〈νj | e−i

ωµν
c (z−ct) is the slowly-varying

part of the atomic flip operators. Making the replacement
∑N

j=1 −→ (N/L)
∫

dz with L the length of the interac-
tion in the propagation direction of the quantized field,
the interaction Hamiltonian then yields

V̂ = −
∫

dz

L

(
h̄g1Nσ̃ab(z, t)Ê1(z, t) + h̄Ω1(t)Nσ̃ac(z, t)

+h̄g2Nσ̃db(z, t)Ê2(z, t) + h̄Ω2(t)Nσ̃dc(z, t)
+h.a

)
. (19)

The evolution of the Heisenberg operators Êi(z, t) corre-
sponding to the two quantum fields can be described by
the propagation equations

(
∂

∂t
+ c

∂

∂z

)

Ê1(z, t) = ig1Nσ̃ba(z, t) (20)

and
(

∂

∂t
+ c

∂

∂z

)

Ê2(z, t) = ig2Nσ̃bd(z, t). (21)

In the condition of low excitation, i.e. σ̃bb ≈ 1, the atomic
evolution governed by the Heisenberg-Langevin equations
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can be obtained by

˙̃σba = −γbaσ̃ba + ig1Ê1 + iΩ1σ̃bc + Fba, (22)
˙̃σbc = iΩ1σ̃ba − ig1Ê1σ̃ac + iΩ2σ̃bd − ig2Ê2σ̃dc, (23)
˙̃σbd = −γbdσ̃bd + ig2Ê2 + iΩ2σ̃bc + Fbd, (24)

where γµν are the transversal decay rates that will be as-
sumed γba = γbd = Γ in the following derivation and
Fµν are δ-correlated Langevin noise operators. From equa-
tions (22) and (24) we find in the lowest (zero) order

σ̃ba = (ig1Ê1 + iΩ1σ̃bc + Fba)/Γ, (25)

σ̃bd = (ig2Ê2 + iΩ2σ̃bc + Fbd)/Γ. (26)

Substituting the above two formulae into equation (23)
yields

˙̃σbc = Γ−1Ω2
0 σ̃bc − Γ−1(g1Ω1Ê1 + g2Ω2Ê2), (27)

where Ω0 =
√

Ω2
1 + Ω2

2 . The Langevin noise terms are
neglected in the above results. For our purpose we shall
calculate σ̃bc to the first order, so

σ̃bc ≈ − 1
Ω2

0

(g1Ω1Ê1+g2Ω2Ê2)+
Γ

Ω4
0

(g1Ω1∂tÊ1+g2Ω2∂tÊ2).

(28)

According to the former discussions, here the dark- and
bright-state polaritons in the multi-mode case can be de-
fined in continuous form:

Ψ̂(z, t) = cos θ(t)Ê12(z, t) − sin θ(t)
√

N σ̃bc(z, t), (29)

Φ̂(z, t) = sin θ(t)Ê12(z, t) + cos θ(t)
√

N σ̃bc(z, t), (30)

where Ê12(z, t) = cosφ(t) Ê1(z, t) + sin φ(t) Ê2(z, t) is the
superposition of two quantized probe fields.

One can transform the equations of motion for the elec-
tric field and the atomic variables into the new field vari-
ables. Similar to the single-mode case, we consider the
low-excitation approximation and find

[
∂

∂t
+ c cos2 θ

∂

∂z

]

Ψ̂(z, t) = φ̇ sin θ cos2 θ ŝ(z, t)

− θ̇ Φ̂(z, t) − sin θ cos θ c
∂

∂z
Φ̂(z, t), (31)

and

Φ =
Γ

g1g2

√
N

cos2 θ

Ω2
0

tan θ
∂

∂t
(sin θΨ − cos θΦ)

− sin θ(Ω2
2 − Ω2

1)ŝ(z, t), (32)

where we have defined ŝ(z, t) = − sin φ(t) Ê1(z, t) +
cosφ(t) Ê2(z, t). It is easy to see when ŝ = 0, the total
system can be reduced to the usual three-level one. For
this we shall calculate the equation of motion of ŝ(z, t) to

study the adiabatic condition. From equations (20) and
(21) and together with the results of σ̃ba and σ̃bd one can
verify that

(
∂

∂t
+ c cos2 β

∂

∂z

)

ŝ = − (g2
1Ω

2
2 + g2

2Ω
2
1)N

Γ

cos2 β

Ω2
0

ŝ

− 1
2
g1g2

√
N sin 2β

∂

∂t
Ê12, (33)

with

tan2 β =
NΩ2

1Ω2
2

g2
1Ω

2
2 + g2

2Ω
2
1

(g2
1 − g2

2)
2

Ω2
0

. (34)

The time derivative of the mixing angle φ is neglected in
the above equation. The first term in the right side of
equation (33) reveals a large absorption of ŝ(z, t), which
causes the field ŝ(z, t) to be quickly reduced to zero so
that the present system reaches pulse matching [12,17,18]:
Ê2 → tan φÊ1. For a numerical estimation, we typically
set [3] g1 ≈ g2 ∼ 105 s−1, N ≈ 108, Γ ≈ 108 s−1, then the
life time of field ŝ(z, t) is about ∆t ∼ 10−10 s which is much
smaller than the storage time [3]. Furthermore, by intro-
ducing the adiabaticity parameter τ = (g1g2

√
NT/Γ )−1,

we calculate the lowest order in equation (32) and thus
obtain Φ̂ ≈ 0, ŝ ≈ 0. Then the formula (31) reduces to the
motion equation of DSPs defined in the usual three-level
Λ type system. Consequently we have

Ê1(z, t) = cos θ(t) cosφ(t)Ψ̂ (z, t) (35)

Ê2(z, t) = cos θ(t) sin φ(t)Ψ̂ (z, t) (36)√
Nσ̃bc(z, t) = − sin θ(t)Ψ̂ (z, t) (37)

where Ψ̂ obeys the very simple equation of motion
[

∂

∂t
+ c cos2 θ

∂

∂z

]

Ψ̂(z, t) = 0. (38)

The above results clearly show that, for example, if the ini-
tial condition reads θ → 0 and φ → 0, i.e. initially the ex-
ternal control fields are much stronger

√
g2
2Ω

2
1 + g2

1Ω
2
2 �

g1g2

√
N and g2Ω1(0) � g1Ω2(0) (the first control field

is much stronger than the second one), only E1(z, t) is
injected into the media and the polariton Ψ = E1(z, t).
By adjusting the control fields so that

√
g2
2Ω

2
1 + g2

1Ω
2
2 �

g1g2

√
N , the polariton evolves into Ψ̂ = −√

Nσ̃bc(z, t)
and the quantum information of the input probe pulse is
stored. Likewise the analysis in section II, when the mix-
ing angle θ is rotated back to θ = 0 again with φ to some
value φe that is solely determined by the Rabi-frequencies
of the two reapplied control fields, from the formulae (35)
and (36) one finds another quantum field Ê2(z, t) will be
created. The amplitudes of the two output quantum fields
are controllable by the reapplied control fields.

Now we shall give a brief discussion on the bandwidth
of the probe fields that can be stored. As an example,
we will deal with the first probe field (the discussion for
another probe field is similar). According to the results of
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equation (35), we can see the spectral width of the probe
field narrows (broadens) when the mixing angles change

∆ωp1(t) ≈ cos2 θ(t) cos2 φ(t)
cos2 θ(0) cos2 φ(0)

∆ωp1(0). (39)

As in the present adiabatic condition, the propagation of
the field E12(z, t) is the same with that of the probe field
in the three-level case, according to the previous results
[8] we obtain its EIT transparency window to be

∆ωtr(t) =
cot2 θ(t)
cot2 θ(0)

∆ωtr(0). (40)

On the other hand, we have the relation E1(z, t) =
cosφ(t)E12(z, t), while their wave-packet lengths keep
constant during the propagation (note that the Rabi-
frequencies of control fields are independent of space in the
present case). Therefore, we can reach the transparency
window of the field E1(z, t) as follows:

∆ωp1
tr (t)

∆ωp1
tr (0)

≈ cos2 φ(t)
cos2 φ(0)

∆ωtr(t)
∆ωtr(0)

. (41)

Together with the above three equations (39–41), we can
easily find

∆ωp1(t)
∆ωp1

tr (t)
=

sin2 φ(t)
sin2 φ(0)

∆ωp1(0)
∆ωp1

tr (0)
. (42)

In the practical case, sin2 φ(t)/ sin2 φ(0) is always close
to unit. Thus absorption can be prevented as long as the
input pulse spectrum lies in the initial transparency win-
dow:

∆ωp1(0) � ∆ωp1
tr (0). (43)

Obviously, this result is similar to the requirement in usual
three-level ensemble case [8] and can easily be fulfilled
when an optically dense medium is used.

Finally, we shall give a brief estimate of the effect of
atomic motion. In fact, atomic motion will lead to an ad-
ditional phase evolution in the flip operators. For example,
considering an atom in position �rj , we have

σ̂bc → σ̂bce
i∆ϕj(�rj), (44)

where ∆ϕj(�rj) = ∆�k ·�rj(t) with ∆�k = �kcj −�kpj . Here �kcj

and �kpj are wave vectors of probe and control fields and
for convenience we may assume �kc1−�kp1 = �kc2−�kp2. The
above equation shows that the free motion will result in
a highly inhomogeneous phase distribution for the atoms
in different positions, and then cause the decoherence of
quantum states. In the adiabatic condition, atomic free
motion can be studied by Wiener diffusion [19]. According
to the results of reference [19], the decoherence of a state
|Dn〉 is characterized by the factor e−nDt, where D is the
constant diffusion rate. On the other hand, for our model
we can use co-propagating probe and control fields (see
Fig. 1b) so that kcj ≈ �kpj (j = 1, 2). Such a configuration
can greatly reduce the phase diffusion and then avoid the
decoherence induced by atomic free motion.

6 Conclusions

In conclusion we present a detailed quantized description
of DSP theory in a double Λ type four-level atomic en-
semble interacting with two quantized probe fields and
two classical control ones, focusing on the dark state evo-
lution and the interesting quantum memory process in
this configuration. This problem is of interest because,
(i) rather than one state of a given probe light, the in-
jected quantized field can convert into two different out-
put pulses by properly steering two control fields; (ii) by
preparing the probe field in a non-classical state, e.g. a
macroscopic quantum superposition of coherent states, a
feasible scheme to generate optical entangled states is the-
oretically revealed in this controllable linear system, which
may open up the way for DSP-based quantum information
processing. The larger class of zero-eigenvalue states be-
sides dark-states are identified for this system and, even
in the presence of level degeneracy, we still confirm the
validity of adiabatic passage conditions and thereby the
robustness of the quantum memory process. Furthermore,
we extend the single-mode quantum memory technique to
the case with multi-mode probe fields, and reveal the ex-
act pulse matching phenomenon between two quantized
probe pulses in the present system. This work suggests
many other interesting ways forward, for example, by ap-
plying forward and backward control fields in our system,
we may obtain stationary pulse of entangled states of light
fields [20]. Other issues relation to interesting statistical
phenomena such as spin squeezing [21] and possible ma-
nipulating of quantum information [22] may also comprise
the subjects of future studies.
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